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Abstract: The swift rise in acceptance of molecular principles defining phase separation by a broad
array of scientific disciplines is shadowed by increasing discoveries linking phase separation to patho-
logical aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s
disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular
interactions. Importantly, the release of water molecules from protein hydration shells into bulk
creates entropic gains that promote phase separation and the subsequent generation of insoluble
cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial
waters and limited hydration in interiors of biomolecular condensates facilitate phase separation.
Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration
to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and
employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance
ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant
that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free rad-
icals. Reduced viscosity by light and melatonin elevates the availability of free water molecules
that allow melatonin to adopt favorable conformations that enhance intrinsic features, including
binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible
for preventing water removal that causes hydrophobic collapse and aggregation in phase separation.
Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates
and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy
between light, water, and melatonin in a modern world.

Keywords: melatonin; dementia; amyloid-β; ATP; adenosine; phase separation; infrared light;
hydrogen bonds; viscosity; bioavailability

1. Introduction

Dementia is a neurodegenerative condition marked by varying levels of cognitive
impairment [1], currently affecting approximately 46.8 million people around the world. It
is estimated that 10 million people will develop dementia each year, and without approved
pharmaceutical intervention to effectively target underlying causes [2–4], by the year 2050,
healthcare spending attributable to dementia is projected to become a significant drain
on resources representing 11–17% of total global healthcare spending [5]. Alzheimer’s
disease (AD) is one of the most common causes of dementia [6,7] followed by vascular
dementia (VaD) [8,9]. Together with Lewy body dementias [10] and frontotemporal de-
mentia (FTD) [11], these major neurodegenerative disorders account for approximately
90% of all dementia cases [12]. Dysregulated aggregation of biomolecular condensates
formed as a result of multivalent macromolecule interactions may underlie the common
molecular mechanisms responsible for the development of all AD and non-AD dementia
(nADD) [13–15].
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An Alzheimer’s biomarker study performed within a defined population over a period
of 15.7 years (maximum) found the absolute remaining lifetime risk for incident dementia
to be significantly associated with elevated amyloid accumulation (hazard ratio 2.11; 95%
CI 1.43–2.79). Even though 87% of the 4984 participants were diagnosed as cognitively
unimpaired at enrollment, higher amyloid accumulation was a significant biomarker corre-
lated with accelerated dementia progression [16]. Vascular risks are generally associated
with the progression of VaD [8,9]. However, midlife hypertension and late-life amyloid-β
(Aβ) deposition were found to be independently associated with increased dementia risk
in 298 participants aged 45–64 in a study that spanned 30 years. The study was unable to
identify evidence of synergy between vascular risk and Aβ deposition on a multiplicative
scale in subjects with dementia, implying that unique molecular pathways may be involved
in the development of dementia [17].

2. Aberrant Phase Separation Is the Fundamental Molecular Driver behind Dementia

In 2017, Banani et al. defined intracellular biomolecular condensates as cytosolic
and nuclear micron-scale compartments not bound by membranes and formed via phase
separation driven by multivalent macromolecular interactions [18]. These membrane-
less organelles (MLOs) are responsible for strategic cellular organization in response to
changing environments including endogenous and exogenous stress [14,19–21]. MLOs
are ubiquitously utilized not only by all eukaryotes, but also bacteria [22], and viruses
which are now recognized as master architects of biomolecular condensates, using phase
separation to form viral replication “factories” [23,24]. The disruption of phase separation
in key cellular processes results in diseases including neurodegenerative disorders and
cancer [25–29].

The forces that drive phase separation encompass simple density transitions in single-
component fluid systems [30] to changes in macromolecule saturation levels in binary
mixtures achieved via manipulating in vitro macromolecule expression levels, interac-
tion energies, and inclusion of hydrotropes/surfactants [31–34]. Spontaneous or driven
phase-separated biomolecular condensates are usually nonstoichiometric assemblies of
multiple proteins and nucleic acids [35]. These multivalent macromolecules engage in
site-specific interactions that conform to the “stickers-and-spacers” architecture [35–37],
forming reversible crosslinks that may involve hydrogen bonds [38–40], ionic strength [41],
cation-π, and π–π interactions [42] that fine-tune percolation thresholds that may further
define phase separation processes [43–46].

The significant discovery by Kar et al. that fused in sarcoma (FUS) and other phase-
separating RNA-binding proteins in the FET family, namely EWSR1 and TAF15, form
reversible clusters of varying sizes in subsaturated solutions where phase separation was
not observed [47], highlights the relevance of percolation without phase separation in
phase transitions in vivo. The aggregation of FUS, EWSR1, and TAF15 are associated
with neurological disorders and the three FET family RNA-binding proteins are widely
expressed in most cell types [48,49]. Thus, the detection of FUS percolation clusters formed
in subsaturated solutions and clusters that are coupled to phase separation in supersatu-
rated solutions [47] offers additional insight in the aggregation of macromolecules in vivo
where saturation concentration that can initiate phase separation has been questioned [50].
In this review, in order to accurately capture the concept that phase separation can be
coupled to percolation as well as other phase transitions in vivo including the conversion
to fibrillar solids [51,52], the term phase separation is employed in lieu of the more popular
nomenclature of liquid–liquid phase separation (LLPS) which restrictively implies only
viscous liquids are present in the coexisting phases [53].

2.1. Phase Separation of α-Synuclein into Amyloid Fibrils in Dementia

In 1992, Hardy and Higgins proposed that the deposition of amyloid fibrils in AD is the
direct cause of cell loss, vascular damage, and dementia [54]. Continued research indicated
that the AD disease process may be the result of the dyshomeostasis between the production
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and clearance of amyloid β-peptides (Aβ) [55,56]. The nomenclature committee of the
International Society of Amyloidosis (ISA) defines in vivo amyloid fibrils as extracellular
protein fibril deposits associated with 36 human amyloid proteins. Intracellular aggregates
such as tau and α-synuclein (α-syn), which are present in all synucleinopathies and are the
major component of Lewy bodies associated with Lewy body dementia and Parkinson’s
disease (PD) [57,58], are excluded from this list [59,60]. However, the hallmark feature of
amyloid fibrils is the self-association of soluble amyloid monomeric fibers into insoluble
cross-β sheets [61–63], and both α-syn [64–66] and tau [67–69] have been reported to
self-assemble into cross-β sheet structures.

Encoded by the SNCA gene on chromosome 4 [70], α-synuclein (αSyn) comprises
140 amino acids [71] with intrinsically disordered regions prone to fibrillization [72]. The
aberrant self-assembly of physiological, soluble αSyn monomers into neurotoxic protein
aggregates implicated in PD and other synucleinopathies [73,74] is now attributed to
phase separation where macromolecular interactions trigger the irreversible liquid-to-solid
transition into amyloid hydrogels containing oligomeric intermediates and cross-β-sheet
fibrils [75–79]. The documentation of the conformational evolution of αSyn phase tran-
sitions has been successfully captured by solution and solid-state magic-angle spinning
(MAS) nuclear magnetic resonance (NMR) spectroscopies [51], and the study and analysis
of the material components as well as intermolecular interactions of protein molecules
within αSyn condensates during phase separations were performed employing fluores-
cence recovery after photobleaching (FRAP) and Förster resonance energy transfer (FRET)
techniques [80]. Since phase separation is an early event in αSyn aggregation, modulating
phase separation and/or interfering with liquid-to-solid phase transitions during αSyn
amyloid phase transitions become attractive molecular targets [81].

Phase transitions from soluble monomeric to insoluble β-sheet fibrils observed in
medin employing C-direct detection NMR in combination with structural bioinformatics
further supports the concept of phase separation as the common molecular pathway
underlying not only AD, but also VaD [82]. Among the 36 amyloid proteins recognized
by the ISA in 2018 [59], medin (AMed) is the most common amyloid found in the human
body [83,84]—being an internal component of milk fat globule-EGF factor 8 (MFG-E8),
also known as lactadherin—that is now associated with vascular Aβ in cerebral amyloid
angiopathy (CAA) pathology [85].

Present in blood vessels of most adults over the age of 50, medin is cleaved from
lactadherin to form insoluble amyloid aggregates [86,87] that co-localize with vascular
Aβ deposits [88] to cause cerebrovascular dysfunction in aging mice and human subjects
with VaD [89,90]. Cerebral arteriole medin is regarded as a novel biomarker for AD and
VaD [91]. Even though the glycoprotein lactadherin has multiple, important physiological
functions [92] including phagocytosis [93], angiogenesis [94], and mucosal repair [95],
medin aggregates alter cellular homeostasis, causing microvascular endothelial dysfunction
by inducing permeability via the formation of pores in lipid membranes that result in
upregulated ionic current flow [96,97], a mechanism not dissimilar to how Aβ peptides
form calcium ion channels in lipid bilayer membranes [98,99]. However, the conditions
that trigger the cleavage of medin from lactadherin causing medin to self-assemble into
pathogenic, insoluble fibrils remain unclear [82,83].

The self-recognizing aggregation of amyloid proteins is not limited to homotypic
enrichment in one protein, but often also involves heterotypic interactions in condensates
containing up to hundreds of proteins [100,101], and the outcome of amyloid aggregation
is modified by these associated heterotypic interactions [102]. Aberrant phase separa-
tion resulting in delayed disassembly of stress granules (SGs) causes the formation of
non-dynamic SGs that entrap and immobilize TAR DNA-binding protein 43 (TDP-43),
rendering the protein insoluble in FTD pathogenesis [15]. Increasing understanding that
phase-separating RNA-binding proteins such as FUS [47,103] and those that associate with
tau [104] play important modulatory roles in the heterotypic interactions that can promote
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or suppress amyloid aggregation [102,105–107], warrants exploration of specific conditions
that may trigger aberrant phase separation in RNA-binding proteins.

2.2. The Underappreciated Role of Hydrogen Bonds and Protein Hydration in Phase Separation
in Dementia

Dementia-related neurodegenerative disorders are often associated with gene mu-
tations that may cause the dysregulation of RNA-binding proteins responsible for the
aggregation of pathological amyloid fibrils during phase separation [108]. The mechanisms
reported mostly involve dysregulation in the low-complexity domains of proteins such
as TDP-43 and FUS [103,105,109–111]. Low-complexity domains (LCDs) are generally
regarded as universally disordered; however, LCDs can also adopt stable, structured con-
formations [112]. Therefore, aberrant phase separation observed in LCDs may involve
other factors in addition to the dysregulation of intrinsically disordered regions that are
essential in the promotion of phase separation. Intrinsically disordered proteins (IDPs)
usually serve as necessary scaffolds that facilitate phase separation of biomolecular conden-
sates [18,113–115] which can be tuned by controlling enthalpy, minimizing entropic costs
in phase separation [116–118].

Intrinsically, phase separation is entropically unfavorable and driven predominantly
by enthalpically favored protein interactions [119–121]. In addition to energetically fa-
vorable multivalent protein–protein interactions that offset entropic costs, variations in
ions and salt concentration, pH, and temperature can result in thermodynamic changes in
entropy–enthalpy compensation that regulate phase separation [122–124]. Phase separa-
tion in proteins such as Ddx4 [125] and hnRNPA1 [126] exhibiting upper critical solution
temperature (UCST) cannot take place above a critical temperature at which the system
remains homogeneous, whereas proteins exhibiting lower critical solution temperature
(LCST) cannot phase separate below a critical temperature at which the system remains
homogeneous [127]. Therefore, increasing temperatures can either stabilize or destabi-
lize biomolecular condensates formed by phase separation [128], and variations in salt
concentration and pH levels can further promote or disrupt phase separation [122].

Stress granules (SGs) are phase-separated membraneless organelles that are formed
under endogenous and exogenous stress conditions; and persistent formation of stress
granules may lead to fibrillization associated with neurodegenerative disorders [126,129].
Adjusting pH levels in solutions tunes both UCSTs and LCSTs that trigger phase separa-
tion [130,131]. Alterations in tightly controlled cytosolic pH not only affect the survival of
yeast and other organisms, but also determine the material properties of phase-separated
stress granule-like condensates that regulate stress responses [132,133]. A reduction in
pH in yeast generates reversible condensates that dissolve upon restoration of neutral pH;
whereas phase-separated condensates induced by heat in yeast can only be reversed with
the help of chaperones [134]. Similarly, in lipid membranes, both pH and salt can increase
or decrease critical temperatures that trigger phase separation [124].

In vitro elevation of salt concentrations produces either a dehydrating, salting-out
(kosmotropic) effect that induces phase separation [135,136], or a hydrating, salting-in
(chaotropic) effect that inhibits phase separation [137–139]. Classic interpretations of
the Hofmeister effect where kosmotropic anions that remove water molecules from a
protein’s hydration shell to reduce protein solubility, increasing potential for aggregation
via electrostatic and hydrophobic interactions [140], and chaotropic anions that exhibit the
opposite effect of increasing protein solubility, functioning as a hydrotrope preventing phase
separation and aggregation [141,142] may not fully account for other relevant conditions
including the reversal of the Hoffmeister effects in anions and cations [143], or the effect of
pH on the aggregation of proteins relative to their isoelectric points (pI) [138].

At its pI of 4.7 pH, α-syn formed highly ordered, fibrillar structures even at low salt
concentrations compared to other conditions due to favorable intermolecular energy inter-
actions that compensated for the lack of salting-out effects in a low-salt environment [144].
The hydrophobic, hydrogen-bonded, B-rich amyloid cores in α-syn are intrinsically disor-
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dered and participate in dynamic intermolecular energy interactions during fibril assembly
and maturation [145–147]. As such, protein hydration exerts a distinct effect on the patho-
logical aggregation of amyloid fibrils in dementia, as the hottest mutational spots are
often located in residues that form protective hydrogen bonds but have lost their native
protecting functions resulting in protein misfolding [148].

2.3. Hydration Water Activates Amyloid Aggregation and Regulates Oligomer Toxicity

The role of water hydrogen bond networks that hydrate protein surfaces in biomolec-
ular systems is known to be active and dynamic [149–152], but its role in intracellular
phase separation is often less understood. Hydrophilic residues are more hydrated than
hydrophobic residues. Thus, entropy and enthalpy become the two fundamental ther-
modynamic driving forces in phase separation that provide the requisite energetically
favorable decrease in free energy. Lum, Chandler, and Weeks postulated that the price for
minimizing broken hydrogen bonds within interfacial hydration water compared to bulk is
an increased enthalpic cost that scales with the surface area of the hydrophobic solute [153].
Therefore, the removal of hydration water into bulk (entropic) leads to increased protein
concentration that facilitates enthalpically favored protein–protein interactions resulting in
condensate formation [154,155].

In other words, desolvation or the release of water molecules from protein hydration
shells into bulk water [156–158] create entropic gains that promote phase separation and
fibril aggregation [136,159,160]. Tau proteins that phase separate from salting-out effects via
increased salt concentration become dehydrated and mature into irreversible, canonical tau
fibrils, whereas tau proteins in reversible condensates formed via electrostatically driven
phase separation remain hydrated and do not mature into pathogenic fibrils with restricted
water accessibility and increased micro-viscosity [135]. Mutational hotspots with structural
defects that affect protein interactions in monomeric states can be regions with an immense
propensity to aggregate if the exclusion or removal of water in those regions confer a high
thermodynamic benefit [148].

In 1959, Walter Kauzmann proposed that hydrophobicity in protein hydration shells
drives protein folding where protein hydration accumulates hydrophobic free energy and
removing the water molecule from the hydration shell can supply the free energy required
to drive protein folding [161]. This hypothesis remained largely controversial [162,163]
until support from experimental evidence on protein hydration shells was published.
When the original clathrate water hydration shell used by Kauzmann in 1959 was replaced
by a dynamic one formed by van der Waals (vdW) attraction [164], it became clear that
the structural differences between water molecules in hydration shells and bulk [165]
contributed to changes in free energy produced in vdW attraction interactions that favored
protein folding [166,167]. Furthermore, the fact that the addition of salt can tune the
hydrophobic effect by breaking hydrogen bonds in hydration shells [168] and rearrange
the hydrogen-bonding environment in interfacial waters [169], provides additional support
for the role of dehydration in the formation of pathogenic amyloid fibrils.

Highly sensitive femtosecond time-resolved fluorescence spectroscopy revealed the
presence of dynamically distinct, confined interfacial hydration water molecules with
severely restrained mobility compared to bulk water [170]. The removal of these con-
fined water molecules in the intrinsically disordered amyloidogenic NAC domain of a-syn
changes the rate of intramolecular backbone reconfiguration to facilitate the formation
of cytotoxic oligomers [171] via intermolecular associations involving chain desolvation,
indicating the entropically favored removal of confined water molecules into bulk wa-
ter [170]. Early studies found the aggregation of protofilaments from Aβ16-22 peptides
was due to the hydrophobic collapse of protofilaments caused by water molecules be-
ing released [172,173]. Similarly, the aggregation propensity of Aβ1-40 was significantly
elevated via escalating salt concentrations to enhance salting-out effects, with the impli-
cation of heightened protein–protein interaction energy and diminished hydrogen-bond
strength [174,175]. Out of 3.45 hydrogen bonds formed by a water molecule, only 2.41 are
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considered “strong” hydrogen bonds. Per the hydrophobic effect, the ability to form hydro-
gen bonds directly affects the stability of protein where net stabilization at 1–2 kcal/mol
can be provided by each intramolecular hydrogen bond [176].

Limited hydration in the interior of MLOs fosters a favorable environment for liquid-
to-solid phase transitions observed in amyloidogenic aggregates that are often preceded
by liquid-to-liquid phase separation [79,177]. During α-syn nucleation, limited hydration
lowers the desolvation barrier and intermolecular hydrogen bond barrier. Thus, the simple
removal of confined water molecules in the hydrophobic amyloid NAC domain in α-syn
can easily breach high desolvation barriers that normally prevent aggregation of amyloid
fibrils [178–180]. Furthermore, the level of protein hydration determines whether homo-
geneous or heterogeneous nucleation is selected as the primary aggregation mechanism,
which further defines the type of amyloid polymorph generated as well as the cytotox-
icity of the α-syn oligomers formed [178]. Unfortunately, reduced hydration may be an
inevitable phenomenon associated with aging in the human brain.

During normal aging, even though total protein content in the normal aging brain
can decline by 5–15% between the ages of 30 and 90 years, water-soluble protein con-
tent actually increases by 16–48%, providing a viable explanation for observations of
significantly decreased water content in normal aging brain cells [181,182]. The fact that
confined and “bridging” interfacial water molecules have limited mobility and exception-
ally slow hydrogen-bond rearrangement compared to bulk water, respectively, [170,183]
highlights the importance of the binding dynamics of interfacial hydration water around
residues located in IDPs prone to phase separation under conditions of limited mobility
and hydration [184,185]. Atomistic MD simulations revealed that during the growth of
Aβ9-40 fibrils, the collective movement of confined interfacial water with reduced mo-
bility provides the entropic energy for pathogenic fibril formation via the removal of
60–85 water molecules that concurrently supplies a dry binding interface between filament
and monomer [186]. Consequently, the ability to manipulate the relative thermodynam-
ics of hydrogen bonds [187] in interfacial water compared to bulk becomes an extremely
attractive proposition in the regulation of protein aggregation in dementia.

2.4. The Synergistic Regulation of Hydrogen Bonds by Light, Water, and Melatonin

The International Union of Pure and Applied Chemistry (IUPAC) defined a hydrogen
bond as “an attractive interaction between a hydrogen atom from a molecule or a molecular
fragment X–H in which X is more electronegative than H, and an atom or a group of atoms
in the same or a different molecule, in which there is evidence of bond formation” [188].
Although hydrogen bonding can affect important physicochemical properties including
density, refractive index, and conductivity [189], due to a limitation of scope, this review is
solely focused on the relevant associations between hydrogen bonds and viscosity [190,191]
in the context of protein hydration in phase separation in dementia.

Interfacial water can exhibit viscosity 106 times higher than bulk water [192], and the
breaking and forming of hydrogen bonds in water [193] can affect viscosity of interfacial
water. Viscosity is measured in units of centipoises (cPs) [194], and viscosity can accurately
indicate flow resistance in water and other solvents. Viscosity in interfacial water is in-
creased by hydrophilicity and reduced by hydrophobicity, implying the strength of the
hydrogen bond is critical to maintaining the integrity of the viscous phase in interfacial
water [192]. Low-level microwaves, and other electric and electromagnetic fields (EMF)
can restructure hydrogen bonding [195,196] where weakened or broken hydrogen bonds
decrease viscosity [197,198] and the formation of stronger hydrogen bonds increases abso-
lute viscosity [199]. Light is a form of electromagnetic radiation (EMR) [200], and plants are
exposed to an entire spectrum of EMR from sunlight. However, plants only absorb visible
light but reflect infrared light.

During canopy photosynthesis, visible light from the sun is absorbed and utilized
while a directly proportional amount of infrared is reflected [201–203]. A tight, linear
correlation exists between canopy photosynthesis and correspondingly reflected NIR in all
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types of plants examined, including well-watered crops, wetland vegetation, grasslands,
and savannas, with different functions, structure, capacity, and even, soil conditions [204].
Surprisingly, or not, a higher level of greenness or presence of vegetation is associated with
reduced risk for AD (20%, odds ratio 0.80; 95% CI, 0.75–0.85) and non-AD dementia (11%,
odds ratio, 0.89; 95% CI, 0.82–0.96) [205]. However, subjects with dementia treated with
UVB irradiation did not exhibit any of the greenness effect even though plants are exposed
to both spectrums in sunlight [206].

Similarly, photobiomodulation employing visible red light (670 nm), non-visible near
infrared (NIR, 800–1090 nm), and even far infrared (FIR, 3–25 µm) show encouraging results
in the attenuation of symptoms associated with dementia including a reduction in Aβ

deposition, size and number of plaque and fibril formation, clearance of misfolded proteins,
increased ATP production and reduced ROS production, improved executive and cognitive
functions, processing speed, memory performance, mood, energy, and sleep [207–217]
(Table 1). The proposal that red and near-infrared wavelengths may promote melatonin
synthesis in mitochondria via the pathway involving nitric oxide and enhanced activity
of soluble adenylyl cyclase further bolsters the synergistic relationship between light and
melatonin [218,219].

Table 1. A sample collection of popular wavelengths employed in photobiomodulation, starting
from visible 670 nm to non-visible near- and far-infrared wavelengths, and their effects on various
symptoms associated with dementia in animals and humans.

Wavelength Model/Cell Line/Device Duration/Intensity Results Ref.

670 nm APP/PS1 AD transgenic
mice/transcranial LED

90 s (4 Joule/cm2)/day ×
20 over 4 wks

Attenuated cerebellar cortex Aβ
deposition, fibril formation. [207]

670 nm
K3 tau, APP/PS1 AD

transgenic
mice/transcranial LED

90 s (4 Joule/cm2)/day ×
20 over 4 wks

Neocortex and hippocampus of K3 and
APP/PS1 mice showed reduction in

tau/fibril formation and size/number of
Aβ, respectively.

[208]

670 nm C57BL/6, transgenic 2576
mice/transcranial LED

90 s (4 Joule/cm2)/day ×
20 over 4 wks

All mice showed reduced Aβ oligomer
binding at CNS synapses. [209]

670 nm h tau, 3xTgAD
mice/transcranial LED

90 s (4 Joule/cm2)/day ×
20 over 4 wks

Reduced toxic tau oligomers, improved
memory deficits, upregulated clearance of

misfolded proteins in both models
[210]

808 nm
Aβ-treated microglia cells

from health mice/
diode laser

5 min (9 Joule/cm2)
Exceeded control cell ATP production
after 24 h by 155%, suppressed ROS

production promoting neuronal survival.
[211]

810 nm
8 patients diagnosed with
dementia/transcranial+

transnasal LED

20 min (pulsed at 40 Hz
at 50% duty cycle),

3 times/wk for
12 consecutive wks

Significant score improvements in
ADAS-cog (13.8%) NPI-FS (61.4%)

compared to baseline 1.
[212]

1060–1080 nm
11 patients with

dementia/transcranial
LED helmet

6 min (1100 LEDs pulsed
at 10 Hz at 50% duty

cycle)/day × 28
consecutive days

Improved executive functioning in clock
drawing, immediate recall, praxis

memory, visual attention, and
task switching.

[213]

1060–1080 nm

60 patients with mild to
moderate

dementia/transcranial
LED helmet

2 × 6 min
(23.1 mW/cm2)/day ×

8 consecutive weeks

Improved cognitive functions, auditory
and verbal learning, processing speed,

mood, energy, and sleep.
[214]

1060 nm
27 healthy participants

aged 45+/transcranial LED
helmet

2 × 6 min
(12 mW/cm2)/day ×

28 minimum

Significant improvements in motor
function, memory performance, and

processing speed.
[215]

1040–1090 nm
APP/PS1 AD

double-transgenic
mice/LED irradiation

6 min (15 mW/cm2)/day
× 55 with a 28-day

suspension after day 40

Improvement in memory, spatial learning
ability, and modest plaque reduction;

suspension period indicated treatment
effects were transient.

[216]

500 nm/
800 nm/
3–25 µm

APP/PS1 AD
double-transgenic

mice/LED irradiation

60 min
(0.13 mW/cm2)/day

× 45

FIR (3–25 µm) enhanced Aβ phagocytosis
via increased ATP production and
attenuated cognitive dysfunction

compared to other wavelengths tested.

[217]

1 ADAS-cog Alzheimer’s Disease Assessment Scale-cognitive; NPI-FS: Neuropsychiatric Inventory
frequency severity.
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The ability to increase adenosine triphosphate (ATP) production in mitochondria is one
of the most widely accepted mechanisms behind the effectiveness of photobiomodulation
in dementia and other health challenges [211,217,220–222]. The fact that both infrared
light and melatonin increase ATP production, and the adenosine moiety of ATP which is
structurally similar to melatonin is capable of solubilizing protein aggregation point to the
existence of a most unexpected, dynamic relationship between NIR light and melatonin that
is inextricably connected to the regulation of hydrogen bonds, viscosity, protein hydration,
and protein aggregation (Figure 1). The following section will present what is currently
known about molecular mechanisms that drive the synergistic relationships between light,
water, and melatonin in the regulation of phase separation of pathological aggregates
in dementia. In subsequent discussions, the term light refers to red and near-infrared
wavelengths unless otherwise indicated.
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[210] 

808 nm 

Aβ-treated microglia cells 

from health mice/diode la-

ser 

5 min (9 Joule/cm2) 

Exceeded control cell ATP production 

after 24 h by 155%, suppressed ROS 

production promoting neuronal sur-

vival. 

[211] 

Figure 1. Visible 670 nm red light reduces viscosity in mitochondria interfacial water to increase free
water molecules and enhance ATP synthase ability to generate more adenosine triphosphate (ATP).
Reactive oxygen species (ROS) increase viscosity and lower ATP synthase efficiency to inhibit ATP
production. Melatonin lowers viscosity by scavenging hydroxyl radical (•OH) and ROS. Increased
free water molecules from lower viscosity form stronger hydrogen bonds with melatonin to enhance
its intrinsic features that include binding interactions with the adenosine moiety of ATP, inhibiting
water removal from protein hydration shells that facilitate amyloid fibril aggregation and solubilizing
aggregates formed as the result of aberrant phase separation.

3. Light, Water, and Melatonin: Ancient Synergies in a Modern World

The synergistic relationship between melatonin, water, and light may have originated
billions of years ago when primitive unicellular organisms depended on this effective and
precise synergy to modulate phase separation to control protein aggregation and associated
biological effects. The efficacy of this synergy also provides a credible explanation for the
immensely successful and rapid distribution of melatonin via horizontal gene transfer [223].
The discovery of the serotonin N-acetyltransferase (SNAT) gene responsible for the syn-
thesis of essential melatonin substrate N-acetylserotonin (NAS) in archaea [224,225] firmly
establishes the quintessential role played by melatonin in early primitive organisms that
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use phase separation as the fundamental driver for relevant biochemical and biophysical
processes to support metabolism, replication, and survival [226–232].

Melatonin (N-acetyl-5-methoxytryptamine) was first isolated from bovine pineal gland
in 1958 [233]. Since then, revelations from the study of melatonin led to a continuously
expanding list of appellations that aim to describe its impressive yet often pleiotropic and
contradictory behaviors. Melatonin is known as a hormone, an antioxidant, an anticancer
agent, an antiviral, an autocoid, a chronobiotic, a hypnotic, an anxiolytic, a glycolytic, a
sleep aid, a universal panacea, a biological modifier, and even a Higgs boson [234]. These
nomenclatures are excellent illustrations of some of the broad-based metabolic effects
achieved by melatonin as it regulates fundamental phase separation processes in living
organisms. The role of melatonin in the regulation of phase separation in the context of
neurodegenerative disorders, cancer multidrug resistance, and viral phase separation are
clearly defined in several in-depth reviews [230,235,236]. Due to a limitation of scope, the
reader may review these extensive discussions for a better understanding of molecular
mechanisms employed by melatonin in the regulation of phase separation under different
biological contexts. This review will focus on the presentation of known, relevant molecular
mechanisms that facilitate and enhance the synergistic relationship between light, water,
and melatonin in the regulation of phase separation in dementia.

3.1. Light, Water, and Melatonin: Viscous Relationships with Hydrogen Bonds

Water molecules confined in interfacial hydration water exhibit severely restrained
mobility compared to bulk water [170]. The mobility of these water molecules is reduced
by interfacial viscosities as high as 106 times that of bulk [192,237]. However, the viscosity
of water constrained in extremely narrow spaces such as the interior of carbon nanotubes
increases and decreases with increased and decreased diameters, respectively [238,239]. In
carbon nanotubes with diameters below 20 Å, water stops behaving like bulk water with
different boiling points, self-diffusion coefficient, and viscosity [238,240–242]. Even the mo-
bility of water molecules in ultra-confined spaces is enhanced by reduced viscosity [239,243]
which is facilitated by a reduction in hydrogen bonds.

In general, viscosity is increased by stronger intermolecular interactions that form
more hydrogen bonds in water molecules [238]. During phase separation, the variation
in internal micro-viscosity between tau droplets formed via homotypic and heterotypic
associations can be as much as a 7-fold increase [244]. Systematic reductions in droplet
micro-viscosity during biological aging may imply continuously evolving intermolecular
interactions that shift droplet equilibrium, modifying aggregation potential that favor
pathological outcomes [14,245,246]. Therefore, novel properties such as enhanced solubility,
diffusion, and electron transfer in specially treated water molecules with lower viscosity
and reduced/broken hydrogen bonds [247] may have distinctive effects on the modulation
of aberrant protein aggregation in dementia.

Hydrogen bonds (HBs) can be reduced/broken by hot electron transfer when plain,
deionized bulk water is allowed to flow through gold nanoparticles under resonant illumi-
nation. The water—known as plasmon-activated water (PAW)—created by this method
exhibits features conspicuously different from bulk even at room temperature [247]. The
reduced intermolecular hydrogen bonds in water molecules not only decrease viscosity,
but also impart a higher degree of freedom in interaction that allows the formation of
stronger intermolecular hydrogen bonding with hydrophilic solutes while enhancing the
solubility of hydrophobic solutes [247,248]. Essentially, the elevated interactions with other
molecules via increased free water molecules in PAW enhance the intrinsic activities of
these molecules. Melatonin is known to dissolve poorly in water [249]; however, melatonin
is able to form stronger hydrogen bonds in PAW resulting in enhancement of solubility
between ~120% [248] to ~150% [250].
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3.1.1. PAW Modulates Melatonin Hydrogen Bonding and Conformation

Melatonin has five distinct hydrogen bonding sites for water, forming up to five
hydrogen bonds with water molecules simultaneously at varying strengths. Two of these
hydrogen molecules from two water molecules can even reside indefinitely when they are
coordinated with the O of the amide group due to the high degree of stability between the
H-bond as indicated by Helmholtz free energy [251,252]. For melatonin, water can either
be a H-bond donor or acceptor, depending on the site it is attached to. However, even
one single water molecule attached to melatonin can change its conformational preference
by modulating the relative energies of the conformations and the heights of the barriers
that separate conformations, where strong H-bonds can produce substantial electronic
frequency shifts. Furthermore, the relative abundance of the conformations can also be
regulated by H-bonds, implying that preferential binding between specific sites and water
molecules can produce conformational clusters with populations as high as 10 times over
other species [252]. In bulk water, melatonin forms the strongest H-bond with its carbonyl
O group, stabilizing its tendency to self-aggregate resulting in low solubility [253].

Melatonin prepared in PAW compared to bulk deionized water exhibited enhanced
clearance of hydroxyl radical at 11.9% vs. 6.69%, respectively; its antiviral potency against
dengue virus in infected human hepatocarcinoma cells is also enhanced, reducing infectivity
by 14.7% vs. 20.6% in bulk [250]. Male Wistar rats subjected to chronic sleep deprivation
(CSD) using the disc-on-water methodology [254] and treated with 10 mg/kg melatonin
via intraperitoneal (IP) injection dissolved in PAW exhibited significantly better results in
all parameters detected, including hepatic function and metabolic activity, than control (no
treatment), CSD only, and CSD + melatonin dissolved in bulk deionized water groups [250].
It is plausible that when melatonin is dissolved in PAW, the intrinsic anti-inflammatory
properties of PAW may also be responsible for molecular mechanisms that support/enhance
melatonin’s antiviral and antioxidative features. Indeed, APP/PS1 transgenic AD mice
treated with PAW showed improved memory function and reduced amyloid burden,
potentially via anti-inflammatory and anti-oxidative effects, compared to age-matched
wild-type controls [255,256]. There is no doubt that the anti-oxidative properties of PAW
enhance melatonin’s intrinsic activities. However, the molecular mechanism involved is an
unexpected, viscous one.

3.1.2. Reactive Oxygen Species Increase Viscosity

Hydrophilicity enhances viscosity in interfacial water at values up to ~106 times that
of bulk due to an increase in ordering and hydrogen-bond dynamics [192]. The negative
polarity of reactive oxygen species (ROS) is able to increase hydrophilicity and elevate
viscosity. When the oxygen atom of one of the most reactive ROS hydroxyl radical (•OH)
becomes highly negative and acts as a hydrogen bond acceptor, it can lower the reaction
barrier stabilizing •OH bonding to water during the polar transition state. Thus, water and
viscosity of water can modulate and stabilize the highly reactive •OH [257]. In bulk water,
•OH forms three stable hydrogen bonds and a weaker hemibond with surrounding water
molecules comprising its solvation shell [258].

In mitochondria, •OH is derived from superoxide radicals produced as a result of a
one-electron reduction of oxygen (O2) from electron leakage during mitochondrial elec-
tron transport [259,260]. Simply stated, the presence of excess, unneutralized ROS can
significantly elevate viscosity in these essential energy-producing organelles, negatively
impacting mitochondrial functions and ATP production associated with pathological Aβ ag-
gregation [261]. Hydrogen peroxide (H2O2)—a ubiquitous ROS with classical intracellular
signaling functions at lower physiological levels [262]—is also produced in mitochondria
from electrons leaked during mitochondrial electron transport activities [259]. Similar to
•OH, H2O2 accumulation can increase matrix viscosity in mitochondria [263,264]. Further-
more, an NIR emissive fluorescent probe with a large Stokes shift detected significantly
elevated viscosity and H2O2 levels in brain mitochondria of APP/PS1 transgenic AD mice
compared to normal BALB/c mice [265].
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3.1.3. Reduction in Viscosity and Hydrogen Bonds Enhance Melatonin ROS Scavenging

Melatonin is known for its ability to scavenge •OH and other free radicals [266–270]
where one molecule of melatonin can scavenge two •OH radicals to produce the stable
cyclic 3-hydroxymelatonin (3-OHM) metabolite [266]. However, the addition of only one
water molecule that provides an H-bonding relay pathway significantly lowered the energy
barrier in the tautomerization step to enhance the scavenging potential by melatonin [271].
The fact that melatonin prepared in PAW exhibit 78% increased effectiveness in •OH
scavenging compared to bulk (11.9% vs. 6.69%) [250] implies that melatonin may adopt
more favorable conformations that enhance its intrinsic activities as a result of stronger
H-bonds formed in water with reduced viscosity and H-bonds compared to bulk.

In the context of aberrant protein aggregation in dementia, the signature reduction in
viscosity and H-bonds in PAW inadvertently accentuates an unconventional but relevant
perspective on the viscous relationships between light, melatonin, and ROS that surpris-
ingly, or not, converge on the synthesis of ATP in mitochondria. In response to conditions
that reduce ATP, budding yeast conserves energy by increasing cytosolic viscosity to slow
cellular processes by reducing protein diffusion rates. Additionally, increased viscosity
modulates phase separation, impeding the formation of stress granules and inducing
aberrant phase separation to form aggregates that were not present in cells that could not
elevate viscosity [272].

3.2. Light, Melatonin, and Viscosity in the Elevation of ATP Synthesis

Mitochondrial matrix exists mostly as interfacial water due to the density of proteins,
and matrix water exhibits similar restrained mobility as interfacial water. Consequently,
matrix water is significantly more viscous than cytoplasm [273]. The viscosity of the mi-
tochondrial matrix is correlated with the respiratory state of the organelle that can affect
not only signal transduction, but also how mitochondrial networks are organized. The
abnormal elevation of viscosity in mitochondria results in dysregulation in metabolite
diffusion that can cause aberrant phase separation resulting in malignancies associated
with fatty liver, diabetes, atherosclerosis, accelerated aging, cancer, AD, and other neurode-
generative disorders. Therefore, the accurate detection and determination of mitochondrial
viscosity can facilitate the understanding of molecular mechanisms behind various diseases
associated with mitochondrial dysfunctions [265,274–294]. A fluorescent probe that can
detect mitochondrial viscosity fluctuations was used for the first time in the successful,
early diagnosis of liver and kidney injury in animal models [295], while other probes are
employed to effectively distinguish normal cells from cancerous cells with distinct, elevated
viscosity [296–299].

In HeLa cells, the average viscosity of mitochondria is determined to be ~62.8 cP [300],
in stark contrast to the 2.04 +/− 0.49 cP obtained for HeLa nucleoplasm viscosity which is
already higher than that in HeLa cytoplasm [301]. Furthermore, treatment with pharma-
ceuticals, such as monensin and nystatin, can further drive matrix viscosity up to 90.5 and
109 cP, respectively [300,302]. Mitochondria of HeLa cells under oxidative stress generate
a tremendous amount of ROS [303]. Therefore, ROS such as •OH, which is naturally
produced during mitochondrial respiration, and excess oxidative stress, can potentially
increase matrix viscosity from its hydrogen-bonding interactions with water molecules.
Dual-targeting fluorescent probes are developed to easily identify viscosity changes in
mitochondria in the presence of specific free radical species [304]. Mechanistically, in-
creased viscosity in the matrix can result in the lower production of ATP catalyzed by the
ATP synthase.

3.2.1. Efficiency of ATP Synthase Is Modulated by Viscosity

The mitochondrial ATP synthase (F0F1) is a rotary motor enzyme with a proton-driven
F0 motor that is embedded in the inner mitochondrial membrane and is connected to
the ATP-driven F1 motor that protrudes into the mitochondrial matrix [305–307]. The
higher viscosity of the medium can slow down the rotation of the F1 motor to reduce ATP
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synthesis not only in mitochondria [308] but also chloroplasts [309]. While ATPase turnover
rates are more effective when detected by probes designed with lower viscous drag [310],
viscous drag can dramatically slow the rate of rotation to 3% of the enzyme turnover rate
in Escherichia coli [311].

Nonetheless, 100% efficiency of the F1 rotor can theoretically be achieved if the 120◦

power strokes rotate at a constant angular velocity [312]. However, power stroke and dwell
duration are easily modified by viscosity. Viscous loads applied to the ATP F1 motor of
E. coli can cause the increase in the duration of the 120◦ power stroke that is correlated to a
20-fold increase in the length of the dwell. Thus, the power stroke velocity is limited by
the viscous load on the motor, and consequently, increases in transition time are the direct
result of increases in viscosity and not from inhibition of the ATPase by other means [313].
A deeper analysis of viscosity sensitivity showed that viscous drag on rotations of the
γ-subunit in the F1 motor [314] can cause variations of more than 5000-fold by using a
variety of rotation probes [315].

3.2.2. The 670 nm Wavelength Elevates ATP Production in Mitochondria

The benefits of photobiomodulation employing the 670 nm wavelength for dementia
and other neurodegenerative disorders are extensively documented (Table 1). Even though
improved ATP production and reduced ROS production are associated with the use of 670
nm irradiation, the exact mechanism responsible for these effects remains controversial.
Experimental works employing 670 nm report the reduction in inflammation via increased
expression of cytochrome C oxidase (COX) in an age-related macular degeneration mouse
model [316]; increased COX expression and ATPase activities in Wistar rats exposed to
suppressive effects of fluorescent light [317]; significantly elevated ATP production in aging
mouse retina via increased COX expression [318]; and the restoration of neuronal ATP
and prevention of apoptosis induced by potassium cyanide—an irreversible inhibitor of
COX [319]. Therefore, benefits from photobiomodulation, especially the enhancement of
ATP production and mitochondrial function, are generally believed to be associated with
the involvement of COX via increased COX expression and activities.

COX, or complex IV [320], is the fourth enzyme that catalyzes the transfer of electrons
from ferricytochrome C to oxygen in the mitochondrial electron-transport complexes, and
COX is highly susceptible to inactivation by oxidative damage induced by ROS including
•OH and 4-hydroxynonenal (HNE), a major lipid peroxidation product [321–325]. Even
though COX is viewed as the primary photoacceptor, molecular mechanism that elucidates
the association of irradiation by 710–790 nm and 650–680 nm wavelengths with reduced
and oxidized states of COX, respectively, remain elusive [326]. Furthermore, experimental
work that combined nanoindentation and 670 nm laser irradiation to modulate viscosities
of interfacial water supports the proposal that lower viscosity in mitochondria is the real
driver behind photobiomodulation propelling enhanced ATP synthesis, and not increased
COX expression and activities [327–329]. However, if reduced viscosity from light irra-
diation is responsible for increased ATP synthesis via increased power stroke velocity
producing more efficient F1 motor rotations, then this proposal should be inclusive of COX
involvement also.

3.2.3. Viscosity Modulates COX Activities in Mitochondria

In 1987, the main activity of COX—the oxidation of ferricytochrome C by COX—was
demonstrated to be viscosity-dependent at both high and low ionic strengths [330]. While
laser flash photolysis revealed a dramatic decrease in the rate of intramolecular electron
transfer (IET) between the heme and molybdenum centers of chicken liver sulfite oxidase
when solution viscosity was increased [331]. The evidence supporting the enhancement
of ATP synthesis via light irradiation is solid [332,333], and it is also not unreasonable to
propose that the reduction in mitochondrial matrix viscosity by light or ROS scavenging
can increase ATP production, and increased ATP is associated with clearance of pathogenic
aggregates from aberrant phase separation.
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Thus, the ability to clear Aβ aggregation by the antioxidant epigallocatechin-3-gallate
(EGCG) may be the result of upregulated COX activities and ATP production from reduced
ROS and matrix viscosity [334,335]. In human neuroblastoma (SH-EP) cells, 670 nm irradia-
tion dramatically elevated ATP levels by 20% which was subsequently diminished after
irradiation-associated clearance of Aβ42 aggregation. Both 670 nm irradiation and EGCG
were independently able to reduce Aβ42 aggregation at the expense of ATP consumption
compared to controls. However, the combined, complementary treatment produced even
better results in the clearance of amyloid aggregates compared to controls [334].

3.3. Melatonin Prevents and Disaggregates Aberrant Protein Aggregation in Dementia via
Association with ATP

Melatonin, a mitochondria-targeted molecule [336] that is known for being a potent
ROS scavenger [266–271], promotes ATP synthesis via the elevation of COX expression
and activities. Melatonin administered to aged rats at 10 mg/kg per day in drinking
water prevented the 30% age-related decline in COX activity while abolishing concomitant
elevation of H2O2 in brain mitochondria of aged rats compared to controls [337]. Mela-
tonin administered orally at 10 mg/kg/day for 17 weeks to male Zücker diabetic fatty
(ZDF) rats restored the 25% decline in renal mitochondrial COX activity and attenuated
other mitochondrial dysfunctions including diminished ATP production compared to lean
controls [338]. Melatonin administered in drinking water at the same amount to ZDF rats
reversed the 76% decline in brown adipose tissue mitochondria COX activity by 35% while
increasing COX activity by a staggering 31% in normal, lean controls [339].

3.3.1. Melatonin Elevates ATP Production via Modulation of COX and Viscosity

Even though cyanide (CN−)—a highly cytotoxic molecule that inhibits COX to sup-
press mitochondrial respiration and ATP production, and elevates ROS by modulating
antioxidant defense—is proposed to be a novel mammalian gasotransmitter that can stimu-
late COX activity and enhance cellular bioenergetics at low endogenous nanomolar levels,
at levels beyond 10 µM, CN− remains exceedingly toxic [340–345]. As a result, sophisti-
cated dual-response sensors and probes are used to detect fluctuations in mitochondria
viscosity in the presence of varying levels of cyanide in living cells [278,346].

Not unexpectedly, the in vitro study of rat brain mitochondria treated with 5 µM potas-
sium cyanide revealed that 50% inhibition of COX activity was nearly entirely counteracted
by treatment with 100 µM melatonin in a dose-dependent manner compared to control;
while COX activity in rat liver mitochondria under same treatment conditions achieved
30% higher efficiency than control. However, at 100 µM cyanide exposure, even 5 mM of
melatonin was unable to reverse the 100% inactivation of COX [347]. In vivo administration
of melatonin at 10 mg/kg (IP) significantly elevated COX activity in rat brain and liver
mitochondria in a time-dependent manner while reversing COX activity inhibition and
preventing mitochondrial damage and oxidative stress induced by ruthenium red treatment
at 60 µg/kg (IP) [348]. Ruthenium complexes can also increase viscosity and induce cell
apoptosis via ROS-mediated mitochondrial pathways [349,350].

3.3.2. Fibril Disaggregation by Melatonin Is Dose-Dependent

Melatonin is intensively studied and extensively reviewed as a likely ideal therapeutic
molecule for AD and other neurodegenerative disorders [351–355]. A novel understanding
of melatonin regulation of biomolecular condensate phase separation in neurodegenerative
disorders [230] provides additional relevant molecular mechanisms behind reported ob-
servation including the inhibition, destabilization, reduction, and delay of α-Syn and Aβ

fibril aggregation. Melatonin not only increased survival rates in transgenic AD mice, but
also reversed Aβ-induced synaptic disorder, memory deficit, neurodegeneration, as well
as phosphorylation of tau in wild-type mice injected with Aβ peptides [356–366] (Table 2).
However, inconsistent results were observed when there were discrepancies in dosage and
timing/duration of administration [363].
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Table 2. In vitro and in vivo studies that reveal important relationships between melatonin dosage,
timing, and administration that produced different results for symptoms associated with dementia.

Melatonin Dosage/Duration Study Design Results Ref.

25 µM, 250 µM, 2.5 mM In vitro α-Synuclein peptide
aggregation

Blocked α-Syn fibril formation and destabilized
preformed fibrils in a dose- and time-dependent

manner; increased viability of primary mixed
neurons treated with α-Syn to ~97% in a

time-dependent manner.

[356]

10 mg/kg (IP) × 5/day for
2 days, then × 2/day for

5 days

Arsenite-induced oxidative
injury in substantial nigra of

adult male rats

Attenuated arsenite-induced α-Syn aggregation,
lipid peroxidation, and glutathione depletion. [357]

100 µM melatonin Aβ peptides (1-40) and (1-42)
β-sheet/fibril formation

Progressive reduction in Aβ1-40 β-sheet
structures to 24% after 24 h incubation;
immediate reduction in Aβ1-42 β-sheet

structures from 89% to 65%, decreasing to 59%
after 4 h.

[358]

Melatonin dissolved in 2 mM
ammonium acetate

Aβ peptide (1-40)
β-sheet/fibril formation

Inhibited β-sheet formation by targeting
hydrophobic Aβ-peptide segment (29-40)

intermolecular activities.
[359]

1 mM melatonin Aβ1-40 peptide,
profibrillogenic apoE4/apoE

Melatonin alone delayed fibril formation from
24 h up to 72 h. Combined with either apoE4 or

apoE3, inhibition remained effective at
termination of experiment.

[360]

2 mg/mL in drinking water
starting at age 4 months until

euthanasia

Transgenic Tg2576 AD mice,
terminated at 4 months 1 wk

or 15.5 months

The brains of animals treated with melatonin
terminated at 15.5 months exhibited dramatic

decline in oligomeric Aβ40 together with a
significant increase in soluble monomeric Aβ40,

and a decreasing trend in Aβ42 compared to
untreated mice at same age. Melatonin

prolonged survival rates of 15.5-month mice to
levels attained by non-transgenic mice.

[361]

2 mg/mL in drinking water
starting at age 4 months until

euthanasia at 15.5 months
Transgenic Tg2576 AD mice

Increased survival in treated mice (3 deaths/
41 survivals) compared to untreated

(13 deaths/31 survivals).
[362]

0.5 mg/mL in drinking water
starting at age 4 months Transgenic Tg2576 AD mice Striking reductions in Aβ levels in brain tissues

of treated mice at 8, 9.5, 11, and 15.5 months. [362]

16 µg/mL in drinking water
starting at age 14 months Transgenic Tg2576 AD mice Melatonin treatment failed to reduce brain Aβ

levels or even oxidative damage. [363]

40-ppm (w/w) in pelleted
minimal basal diet

Male B6C3F1 mice aged 6, 12,
and 27 months

Significant reduction in Aβ in brain cortex
tissues: 57% in Aβ40 and 73% in Aβ42; increased
melatonin levels in cerebral cortex in all 3 treated

age groups (12 > 6 > 27 mos) compared
to untreated.

[364]

10 mg/kg (IP) daily for
3 weeks

Male wild-type C57BL/6N
mice (8 wks old) injected with

Aβ1-42 peptide

Melatonin treatment reversed Aβ1-42-induced
synaptic disorder, memory deficit, and
prevented Aβ1-42-induced apoptosis,

neurodegeneration, and tau phosphorylation.

[365]

10 mg/kg in drinking water
from day 7 after tauopathy

induction to day 28 at
termination

4-month-old C57BL/6J mice
injected with human tau

mutation P301L (AAV-hTau)

Increased ROS and tau hyperphosphorylation
starting at day 7 precedes cognitive decline;
melatonin-treated animals showed reduced

memory impairment, tau hyperphosphorylation,
ROS, and neuroinflammation.

[366]

10 µmol/L

Ex vivo brain slices from
3-month-old SD rats exposed
to okadaic acid to induce tau

hyperphosphorylation

Melatonin reduced tau hyperphosphorylation
and ROS to control levels in OA-treated

brain slices.
[366]

100 µM–5000 µM Aggregation/disaggregation
of repeat domain Tau (K18wt)

Pre-formed tau fibril disaggregation was
dose-dependent: 14% with 100 µM, 54% with

5000 µM.
[367]

200–5000 µM Aggregation/Disaggregation
full-length tau (hTau40wt)

Tau treated with 200 µM melatonin showed no
change in morphology compared to controls;
5000 µM melatonin treatment did not prevent
aggregation but disaggregated tau fibrils into

broken filaments.

[368]

Similarly, in vitro studies on tau fibril aggregation and disaggregation in the presence
of melatonin at varying strengths found disaggregation effects to be dose-dependent
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where 100 µM led to 14% disaggregation while 5000 µM disaggregated ~54% of pre-
formed repeat domain tau [367] (Table 2). However, 200 µM melatonin treatment in
full-length tau aggregates failed to produce morphological changes, and 5000 µM treatment
could not prevent aggregation but was able to disaggregate tau fibrils into small, broken
filaments [368] (Table 2).

3.3.3. Melatonin Hydrogen Bonding May Modulate Salt Bridge Formation in Aggregates

The general consensus on the disaggregation mechanism employed by melatonin is
the disruption of salt bridge formation or the reduction of hydrophobic interaction between
proteins [358,359] (Table 2). Salt bridges formed between tau proteins can strengthen and
stabilize the core of the paired helical filaments which enhances aggregation [367,369]. Both
hydrogen bonds and salt bridges provide favorable free energy during protein–protein
binding. Therefore, unfulfilled hydrogen bonds or isolated charges without forming salt
bridges can destabilize binding due to the desolvation effect [370,371].

During Aβ oligomerization, the prerequisite expulsion of water molecules from pro-
tein hydration shells facilitates the formation of salt bridges [372]. In general, weaker
hydrogen bonds are formed in interfacial regions due to the restrictive translational and
rotational freedom constraints in interfacial regions. Consequently, more water molecules
are required in interfacial regions for bridging hydrogen bond networks across protein
interfaces [370]. When interacting with melatonin, water can act as both a H-bond donor
to the amide carbonyl, methoxy oxygen, or indole π clouds and a H-bond acceptor from
the amide NH and indole NH groups [252]. Therefore, the ability to form π hydrogen
bonds [373] potentially allows melatonin to prevent the formation of salt bridges that
impede intramolecular tau filament aggregation [374]. However, in vitro studies produced
results that did not fully support in vivo and ex vivo work on melatonin and tau hyper-
phosphorylation [367,368] (Table 2).

3.3.4. Hyperphosphorylation Reduces Water Hydration during Fibril Aggregation

Hyperphosphorylation of tau is a reversible physiological process, but abnormal
hyperphosphorylation in neurodegenerative disorders including AD is resistant to de-
phosphorylation and proteolysis [375–378]. It is believed that the cytotoxicity of Aβ is
tau-dependent where tau and Aβ together drive healthy neurons into diseased states and
that both Aβ and tau toxicity reinforce each other via a feedback loop [379–382]. The
oligomerization of tau fibrils resulting in the formation of pathological tau aggregates is
thermodynamically facilitated by hyperphosphorylation of tau proteins [383]. Hydrophobi-
cally driven phase separation which leads to the removal of water molecules from protein
hydration shells is the predominant interaction that amplifies hydrophobic attractions
that cause hyperphosphorylation of tau and fibrillization [135,384]. Recall tau proteins
that phase separate due to salting-out effects mature into pathogenic, irreversible, canoni-
cal tau fibrils with restricted water accessibility and increased micro-viscosity [135] (see
Section 2.3).

Furthermore, hyperphosphorylation can generate conformation changes critical for
in vitro phase separation of full-length tau which precedes aggregation. Hyperphosphory-
lation shifts the equilibrium between soluble and phase-separated tau to favor the droplet
state, enhancing maturation that initiates pathological aggregation [385]. Consequently, the
ability to form hydrogen bonds to maintain protein solubility may determine the level of
effectiveness of melatonin treatment in the prevention of tau hyperphosphorylation and
subsequent phase separation events that ultimately result in the formation of pathological
tau aggregates.

Therefore, in vitro work that showed dose-dependent disaggregation of pre-formed
tau fibrils but the inability to prevent aggregation even at high concentrations of 5000 µM
in contrast to in vivo and ex vivo work that reported a significant reduction in tau hyper-
phosphorylation even after the establishment of tauopathy (Table 2) may simply reflect
the absence of ATP that can modulate hydrophobic interactions from hydrogen-bonding
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activities. In the context of phase separation in dementia, ATP may be the quintessential
lynchpin that brings light, water, and melatonin together in a dynamic and effective synergy.
After all, the regulation of aberrant protein aggregation in dementia by light and melatonin
is associated with molecular mechanisms including reduced viscosity, hydrogen bonding,
protein hydration, and elevation of ATP synthesis (Figure 1).

3.4. Light, Water, and Melatonin: The Adenosine Moiety Effect of ATP

The ability of ATP to solubilize hydrophobic substances in aqueous solutions at
neutral and elevated pH was first reported by Mandl and Neuberg in 1952 [386]. Several
decades later, ATP was observed to behave as a hydrotrope, solubilizing and dissolving
protein aggregates in Xenopus oocyte nucleoli, preventing the aggregation of synthetic
Aβ42 peptides, and even dissolving preformed tau fibrils [387,388]. However, employing
all-atom molecular dynamics (MD) simulations, Kurisaki et al. observed contradictory
results where ATP actually did not have any effect on the dissociation of monomers or
the decomposition of the Aβ42 oligomer. Instead, the hydrophobic adenosine moiety of
ATP was reported to dissociate Aβ42 monomers via contacts with Aβ42 backbone atoms,
potentially dissolving the Aβ42 oligomer by shifting thermal equilibrium from an on-
pathway species to an off-pathway species [389].

These observations were further clarified by Mehringer et al. demonstrating via MD
simulations that ATP did not exhibit classic features of a hydrotrope or displayed chaotropic
salting-in effects. In fact, ATP can be considered a kosmotropic anion with salting-out
effects as a result of the triphosphate moiety of ATP capable of lowering the solubility
of organic compounds in water. The ability of ATP to prevent and dissolve aggregates
formed by phase separation observed in earlier works [387,388] is facilitated mainly by
the interaction of the aromatic adenosine moiety in ATP with intrinsically disordered
proteins, while the highly charged phosphate moiety served to heighten the solubility
of the hydrophobic adenosine in ATP [390]. This molecular mechanism clearly explains
why AD transgenic mice exhibit significantly reduced ATP production and mitochondrial
dysfunction [391]. The adenosine moiety prevents hydrophobic collapse and aggregation
by increasing solubility that prevents water removal [173]. As a consequence, the presence
of ATP is highly effective in the suppression of Aβ16-22 peptide aggregation [392].

Adenosine is a primordial metabolite [393] that is an integral component of ATP
and RNA [394,395]. Not unexpectedly, both ATP and RNA modulate phase separation
biphasically where low concentrations enhance phase separation but high concentrations
inhibit droplet formation [387,396–399]. MD simulations demonstrate succinctly that the
dissolution of FUS by ATP-Mg2+ is promoted by solubilization via the adenine moiety and
the phosphate moiety served only to enhance the requisite hydration effect [400].

Mechanistically, the adenosine moiety may prevent amyloid fibril formation by in-
terfering with Aβ peptide π–π stacking [401,402]. Interestingly, the indole ring of tested
indole derivatives effectively inhibited the formation of amyloid fibrils in hen egg-white
lysozyme induced by low pH and high temperatures via hydrophobic interactions that
accelerated disaggregation and destabilized the amyloid fibrillar state [403,404]. Therefore,
it is perhaps not an evolutionary coincidence that melatonin not only exhibits structural
homology to the adenosine moiety of ATP [401] (Figure 2), but also binds to adenosine via
a hydrogen bond [405–408]. Consequently, ATP and melatonin may have been used for
billions of years by living organisms to efficiently regulate phase separation in proteins
with a high propensity for aggregation [230,401,409].

Arguably, the absence of ATP, despite the ability of melatonin to disrupt salt bridge
formation, may be the reason why in vitro works on melatonin and tau fibril aggregation
reported distinctly different results in the inhibition of fibril formation that could not
confirm in vivo and ex vivo observations even at high concentrations of 5000 µM (Table 2).

Extracellular adenosine is derived from the degradation of ATP and adenosine monophos-
phate (AMP), whereas hydrolysis of AMP is the main source of intracellular adeno-
sine [410,411]. It is estimated that extracellular adenosine can rise 1000-fold from the
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low nanomolar range of ~20–300 nM to the low micromolar range as high as 30 µM under
conditions of high physical stress including extreme exercise and high altitude with low
ambient oxygen [412]. Neurodegenerative diseases, inflammatory conditions, autoimmune
diseases, cancer, diabetes, and cerebral ischaemia are pathological conditions associated
with elevated extracellular adenosine [410,413–417].

Under optimal conditions, the high reserve/maximum capacity of melatonin synthesis
in humans theoretically confers enhanced survival fitness as higher melatonin production
allows rapid adaptation to unpredicted internal and external stressors [418]. Assuming that
melatonin can be bound to adenosine at a 1:4 ratio [406–408], 6–20 nM plasma adenosine
in venous blood collected from normal, healthy subjects [419] can theoretically bind to
1.5–5 nM of plasma melatonin. However, the lower range of 1.5 nM already reflects the
highest 1.13 nM median level detected in nocturnal plasma melatonin concentration in
children between the ages of 1–3 [420], and melatonin production begins to decline at the
early age of 20–30 to approximately 0.12 nM after the age of 50 [421–423].

Furthermore, although there are contrary outcomes in some other reports, there may be
conditions where endogenous production of melatonin is suppressed by constant exposure
to 60 Hz magnetic field [424] and ambient light at night [425,426]. In addition to binding
adenosine, melatonin can significantly elevate ATP production in mitochondria [347,348].
Therefore, the adenosine moiety effect of ATP in phase separation is directly affected by
how much melatonin is available, and the dosage of melatonin becomes a critical moving
target in the study of phase separation regulation in dementia.
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melatonin molecule [427] and the adenosine moiety of ATP [428,429].

4. Of Mice and Men: Perfecting the Human Equivalent Dose for Melatonin in the
Regulation of Phase Separation in Dementia

The in vitro and in vivo effects of melatonin in dementia is not only dose-dependent,
but may also be time-, and perhaps even age-dependent (Table 2). Three experiments that
tested the same strain of transgenic Tg2576 AD mice with 0.016, 0.5, and 2.0 mg/mL of
melatonin added to the drinking water starting at various ages, produced not only different,
but also contradictory results (Table 2). Tg2576 mice are leaner compared to wild types as
they age [430–432]. Assuming an average weight of 22.5 g for each animal drinking 3 mL
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of water per day [361,362], the approximate daily melatonin supplementation would have
been 2.13, 66.66, and 266.66 mg/kg, respectively.

Tg2576 mice receiving ~2.13 mg/kg daily starting at age 14 months failed to show any
benefit in the reduction in Aβ accumulation in the brain or oxidative stress levels [363];
whereas Tg2576 mice receiving ~66.66 mg/kg daily starting at age 4 months showed a
significant reduction in Aβ levels in brain tissues, as well as lowered abnormal nitration
of proteins [362]. Importantly, Tg2576 mice receiving ~266.66 mg/kg daily starting at age
4 months produced the most impressive results where the brains of mice terminated at
15.5 months not only exhibited a dramatic decline in oligomeric Aβ40, but also a signif-
icant increase in soluble monomeric Aβ40. A noticeable decreasing trend in Aβ42 was
observed in treated compared to untreated mice at the same age [361]. When Tg2576 mice
from two separate experiments were administered ~266.66 mg/kg melatonin in drinking
water daily starting at age 4 months until termination at 15.5 months, survival was signif-
icantly increased in treated compared to untreated mice [361,362]. Melatonin treatment
at ~266.66 mg/kg daily in drinking water was able to reduce mortality in Tg2576 mice to
levels observed in wild-type mice [361] (Table 2). Consequently, the effective translation of
melatonin doses between animals and humans becomes the primary consideration when
designing the dosage for clinical trials.

4.1. Aiming at Moving Targets in Allometric Scaling of Melatonin Interspecies Conversion

Animals have different metabolic rates. In general, larger animals have lower metabolic
rates; therefore, the metabolic rate requires scaling in the conversion of interspecies
doses. Allometry broadly describes the study of consequences between body and or-
gan sizes [433,434]. The concept of interspecies allometric scaling was first presented in
1637 by Galileo Galilei [435]. Since that time, various allometric approaches have been pro-
posed and used to determine the most efficacious human equivalent dose (HED) [436–450].
However, the identification of a definitive unified principle that effectively scales and
optimizes different energy metabolism systems across animal species remains elusive and
highly controversial [441,451–454].

In 1880, Rubner first proposed the body surface law that scales metabolic rate with
body mass raised to the power of
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(assuming human Km = 37.9).

For example, to calculate the HED for a 70 kg human, BSA 1.846, Km 37.9, the metabolic
rate exponents for a mouse weighing 0.02 kg, BSA 0.007 (M2), Km 2.857, and Km ratio 13.265;
and a rat weighing 0.15 kg, BSA 0.025 (M2), Km 6, and Km ratio 6.317, after adjustments
would be 0.683 and 0.700, respectively. For a mini pig weighing 40 kg, BSA 1.14 (M2),
Km 35.088, and Km ratio 1.08, the exponent for metabolic scaling for a 70 kg human
becomes 0.863.

Thus, the accuracy of HED calculations during interspecies conversion is strictly de-
pendent upon both body weight and BSA. The human BSA can be estimated via the formula
BSA =
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to ascertain. Popular manuals containing instructions for interspecies HED conversions
rely upon predetermined animal BSAs based upon a mathematical formula (BSA = kW2/3)
postulated by Meeh in 1879, where BSA is derived from a constant k and volume estimated
from body mass that is scaled to the
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-power. For most small animals including mice, the
mean constant k is accepted to be 9.83 [459,460]. However, empirical determination for
Meeh constants in mice with different body compositions and shapes revealed a range
from 9.822 (normal) to 8.288 (obese) [459]. Therefore, the difference in Meeh constants
between measured and calculated values would be important considerations when using
mice with altered body composition. Furthermore, modifications for cell porousness per
fractal theory indicate that the scaling exponent can vary from 0.694 to 0.83 [450].

As such, the estimated HEDs in this review will be calculated employing metabolic
rate scaling using body weight raised to the
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HED (mg/kg) = animal dose (mg/kg) × (WEIGHT[kg]animal/WEIGHT[kg]human)(1−0.75)

Using this formula, the estimated HED for a rat weighing 0.2 kg with a 10 mg/kg
melatonin dose will be 2.12 mg/kg and 2.4 mg/kg for a 100 kg and 60 kg human, re-
spectively. Nevertheless, the often-large differential in interspecies bioavailability and
pharmacokinetics that can be modulated by route of administration, dosage, solubility, and
formulation must also be taken into account for the accurate determination of an efficacious
HED during conversion/scaling processes.

4.2. The Many Faces of Bioavailability in the Interspecies Conversion of Melatonin

The bioavailability of a substance is generally accepted as a key pharmacokinetic pa-
rameter, expressed as a percentage, that describes the rate and extent the substance becomes
available in the general circulation after being delivered from a pharmaceutical form. Abso-
lute bioavailability is a percentage obtained by comparing extravascular administration to
intravenous injection (IV) assumed to be 100% available, whereas relative bioavailability
compares different routes or formulations without reference to an IV administration [461].
Early work found healthy male subjects who ingested a single 80 mg melatonin (gelatin
capsules) displayed varying levels of peak serum melatonin and absorption levels (up to
25-fold difference) 60–150 min after ingestion. This peak level could be extended from
~1.5 h to 4–6 h when subjects were given one 80-mg capsule/h over a 3 h period [462].
Melatonin bioavailability in humans, absolute or relative, is delivery-, dose-, solubility-,
and formulation-dependent.

4.2.1. Administration Routes Modulate Melatonin Bioavailability

The bioavailability of melatonin is affected by different routes of administration, where
the mean bioavailability for 25 mg of melatonin delivered via intravesical, transdermal,
rectal, and vaginal administration in healthy female volunteers were 3.6%, 10.0%, 36.0%,
and 97.8%, respectively, compared to IV administration [463]. However, the determination
of the bioavailability of oral melatonin may be complicated by melatonin metabolism. In
humans, melatonin is mainly cleared by first-pass hepatic metabolism. When the clearance
of an IV melatonin dose was combined with plasma concentrations of oral doses from
previous data, the calculated oral bioavailability of melatonin was estimated to be 3–6%
after a 2.5 mg dose, 3–76% after an 80 mg dose, but only 9% after a 100 mg dose [464].

In 2000, DeMuro and coworkers determined the absolute oral bioavailability of 2
and 4 mg melatonin doses (tablets) to be 14.3% ± 7% and 15.9% ± 6%, respectively,
compared to IV melatonin (2 mg) [465]. Fifteen years later, a systematic review of 22 studies
identified from 392 records that tested oral or IV melatonin dosages between 0.3 and 100 mg
found the bioavailability of melatonin to be approximately 15% with significant variability
between individuals, where critically ill patients often displayed accelerated absorption
but compromised elimination [466].
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4.2.2. Melatonin Bioavailability Is Inversely Correlated to 6-Sulfatoxymelatonin

As such, the interpretation of bioavailability may not be straightforward considering
the fact that absolute bioavailability of oral melatonin has also been reported at ~3%
(10 mg gelatin capsule) albeit with considerable variability among the 12 tested healthy
male subjects (20–40 yr old) [467]. Low absolute bioavailability in oral melatonin is often
the prominent effect of first-pass hepatic metabolism which produces the major melatonin
metabolite 6-sulfatoxymelatonin (6-OHMS). Consequently, low endogenous production of
melatonin in the elderly is associated with a significant reduction of 6-OHMS in older test
subjects compared to younger ones (82–21 years old) [421]. However, a small study sample
found a significant inverse correlation between oral bioavailability and 6-OHMS, where
lower oral bioavailability (10%, 12%) was correlated with high plasma 6-OHMS (31%, 14%).
Conversely, high bioavailability (56%, 54%) was associated with lower 6-OHMS in plasma
(4%, 3%) of healthy male subjects (21 to 32 years old) tested [468].

This inverse relationship was also observed in children admitted to an intensive care
unit where septic patients who did not survive exhibited nocturnal melatonin levels that
were significantly higher than survivors, but total 6-OHMS excretion was dramatically
lower in nonsurvivors compared to survivors. Additionally, septic shock patients had
higher nocturnal melatonin levels than non-septic patients [469]. Low plasma 6-OHMS is
correlated with autism [470,471], and low 6-OHMS excretion level is associated with adults
who were lean at birth but obese in adult life, and high excretion rates were associated with
opposite observations [472]. Similarly, patients with unstable angina exhibited significantly
lower 6-OHMS than healthy controls and no negative correlation with age was observed
in coronary patients as opposed to healthy subjects [473]. Therefore, the interpretation
of melatonin bioavailability becomes more meaningful when 6-OHMS levels are taken
into consideration.

4.2.3. Animals Show Large Variations in Melatonin Bioavailability

In animals, melatonin bioavailability via different administration routes varies greatly
with strain, species, and first pass metabolism after administration. Yeleswaram and
coworkers determined the absolute bioavailability of melatonin for a 10 mg/kg oral dose
compared to IV in male Sprague Dawley (SD) rats to be 53.5%, but more than 100% in dogs
and monkeys. However, the oral bioavailability in dogs is dose-dependent, where 1 mg/kg
resulted in only 16.9% bioavailability. IP injection of melatonin at 10 mg/kg in SD rats
increased bioavailability to 74.0% compared to oral at 53.5%.

In rats, IV administration at half the dose (5 mg/kg) achieved 80% bioavailability via
IP at 10 mg/kg [474]. Rats, regardless of strain and administration, metabolize melatonin
completely. SD rats excreted 60–70% of radiolabeled melatonin via IV injection as the major
metabolite 6-OHMS [475]; and male Wistar rats administered 12.5–250 µg melatonin via
IP injection also showed concentration-dependent increases in plasma of melatonin and
6-hydroxymelatonin, which always maintained a constant ratio of 1% of plasma melatonin
irrespective of dosage. However, the sulfate conjugate 6-OHMS reached at maximum,
~64-fold elevation of maximum plasma 6-hydroxymelatonin levels [476].

Similar to rats, female C57BL/6 mice (age 8–10 weeks) administered varying doses
of melatonin at 31.25, 62.5, 125, 250, and 500 mg/kg showed no difference in the ability
to clear and eliminate melatonin; and the concentration of melatonin in the liver and
gastrointestinal tracts was higher than other vital organs by 5- to 10-fold, indicating that
hepatic first-pass metabolism is also prominent in mice. However, the effect of melatonin in
mice is also dose-dependent even at supra-pharmacological concentrations. After exposure
to lethal radiation, mice administered 500 mg/kg had the highest survival rate (55%)
compared to 250 and 125 mg/kg (40%) [477].

4.2.4. Solubility and Formulation Modulate Melatonin Bioavailability

The oral bioavailability of melatonin, at any dose, can be modulated by altering
solubility. The oral bioavailability of melatonin in critically ill patients with sepsis was
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greatly enhanced by the use of solvents, where melatonin dissolved in glycerol achieved a
5-fold increase in relative bioavailability over melatonin in capsules at the same doses (20
or 50 mg) [478]. Similarly, when compared to IV solution (62.5 mg/kg dissolved in water),
absolute oral bioavailability in mice of an aqueous melatonin suspension at 250 mg/kg
administered via gavage tube was 29%, whereas 250 mg/kg melatonin dissolved in a
popular co-solvent polyethylene glycol 400 (PEG400) and administered in the same manner
achieved absolute bioavailability of 98.5% [477]. However, PEGs are very hydrophilic
molecular crowders that can amplify entropy gain from water-release, causing dehydration
that drives phase separation [136]. Hence, the use of PEG as a solvent in applications for
the regulation of phase separation must be carefully weighed.

Variations in formulation also affect melatonin bioavailability. In rabbits, intranasal
delivery of melatonin encapsulated in starch microspheres achieved absolute bioavail-
ability of 84.07%, whereas intranasal administration via solution produced much lower
pharmacokinetics [479]. While intranasal melatonin administration in male Wistar rats via
niosomes—bilayer vesicles of nonionic surfactant-based liposomes—achieved absolute
bioavailability of 98.7% compared to IV melatonin solution [480]. Therefore, the successful
conversion of an animal melatonin dose into an efficacious human equivalent requires
equal considerations of metabolic rate scaling, bioavailability as determined by intrinsic
differences between species, administration route, as well as solubility and formulation.

4.3. Timing Is Everything in the Dosing of Melatonin for the Regulation of Phase Separation
in Dementia

The daily supra-pharmacological dose of 266.66 mg/kg administered in drinking
water to transgenic Tg2576 mice from 4 months to 15.5 months not only prevented aggrega-
tion of amyloid fibrils but also prolonged survival compared to untreated mice [361,362].
This dose can be converted into a HED using metabolic scaling to the
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-power, with
the assumption of mice and human body weight to be 0.0225 kg and 70 kg, respectively;
and oral bioavailability of mice and humans to be 63.75% and 15%, respectively. 63.75%
oral bioavailability is a conservative estimation of a 50% enhancement of solubility in
water achieved by first dissolving melatonin in hydroxy methyl cyclodextrin before dilu-
tion in drinking water to the final concentration of 2 mg/mL [361]. Cyclodextrins (CDs)
are small carbohydrates that enhance the solubility of molecules and drugs, resulting in
higher bioavailability [481,482]. The HED obtained before the bioavailability adjustment
is 2499 mg. Without solubility enhancement, the adjusted bioavailability HED dose is
4831 mg. After correcting for a 50% enhancement in bioavailability (calculated based on
oral bioavailability data obtained by Choudhary et al. [477]), the final HED is a staggering
dose of 10,621 mg.

Even though the toxicity of melatonin as defined by LD50 has not been determined in
human or rodents, where early studies failed to produce death in mice at 800 mg/kg [483],
and acute oral toxicity that result in LD50 in rats is reported at concentrations higher than
3200 mg/kg (in one single dose [484]) according to the latest Merck safety data sheet
on melatonin (Regulation (EC) No. 1907/2006, revised 17 November 2021), without a
convincing rationale for a high HED in the context of phase separation in dementia, this
extreme supra-pharmacological HED may seem unjustified.

4.3.1. The Rationale for Frequent Division of Melatonin Doses

The Tg2576 mice drank ~3 mL of water containing a total of 6 mg melatonin in a
24 h period. Accordingly, total HED should also be administered in divided doses of
885 mg × 12. This hypothetical HED now resembles the HED used by Martin et al. to
elevate ATP production via complex I and COX (complex IV) activities in the brain and
liver mitochondria of rats [348].

Male Wistar rats with a body weight between 200–230 g were administered 10 mg/kg
melatonin via IP injection. Respiratory complex activity enhancements were tissue- and
time-dependent. Complex I activities in the liver achieved peak levels and returned close
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to baseline at ~30 and ~180 min, respectively; whereas in the brain, peak activity levels
were attained at ~60 min and returned to baseline at ~180 min. COX activities in both the
liver and brain became significantly elevated at ~30 min, but reached a peak in the liver
at ~100 min before declining close to baseline at 180 min, whereas brain activities quickly
dropped to baseline soon after 120 min [348]. In other words, in the brain, complex I and
COX reached peak activity levels at 60 and 30 min, respectively, before returning to baseline
at ~120 min. Whereas in the liver, complex I and COX activities were both elevated at ~30.
Complex I steadily declined to close to baseline at ~180 min, but COX activities remained
elevated and reached a peak at ~100 min before declining close to baseline at ~180 min.

The difference in peak and duration of respiratory enzyme activities may reflect the
effect of prominent first-pass hepatic metabolism where more melatonin is retained in the
liver and gastrointestinal tracts than other vital organs such as the brain [475,477]. Regard-
less, bioavailability via IP in rats is ~74%, or 4.933-fold higher than oral bioavailability in
humans. Therefore, assuming an average body weight of 0.215 kg and 70 kg for rats and
humans, respectively, the total daily HED that can effectively maintain peak complex I and
COX activity at a sustained level throughout a 24 h period in order to provide adequate
ATP and adenosine that can prevent and solubilize aberrant phase separation and aggre-
gation is 9755 mg, adjusted for differences in metabolic rate and bioavailability, assuming
average intake of 812.90 mg × 12 in a 24 h period. However, the amount quickly doubles
to 19,509.60 mg if maximum complex I and COX activities were to be sustained in the brain
over a 24 h period based on observations reported by Martin et al. [348].

At this point, the estimated daily total HED of 10,621 mg obtained from Tg2576 mice
taking 266.6 mg/kg in drinking water becomes quite reasonable and theoretically justifi-
able. In addition, in vitro work found a strong correlation between ATP and melatonin
concentration for disaggregation of fibrils [367,388], where 1 mM of ATP and melatonin
both were able to dissolve 20% of aggregates, respectively; 4 mM and 5 mM of ATP
and melatonin dissolved 50% and ~60% of aggregates, respectively (Figure 3). There-
fore, the rationale supporting supra-pharmacological oral melatonin doses to maintain
elevated ATP synthesis that prevents aberrant phase separation and aggregation warrants
further investigation.
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Figure 3. Comparison of disaggregation percentages obtained when different concentrations of
melatonin and ATP were added to mediums containing repeat tau aggregates [367] and egg white
aggregates [388], respectively.
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4.3.2. The Calculation of HED Estimates Adjusted for Differences in Metabolic Rates,
Bioavailability, and Formulation

A close examination and comparison of various HED estimates obtained from the
different in vivo experiments discussed in Table 2 may provide clarification on melatonin
doses required for the effective regulation of phase separation in dementia. Importantly,
there is a difference in doses required to obtain similar results in healthy versus diseased,
transgenic animal models.

Table 3 illustrates how (A) oral melatonin HED for a human weighing 70 kg is con-
verted from animal doses by using metabolic rate scaled to
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3/4); (B) where HED (A) is further adjusted by interspecies bioavailability difference
that takes into account both species differentials and administration routes; and (C) adjusts
(A) to reflect enhancements via solubility/formulation as per study design. In the absence
of data, where applicable, the average body weight of transgenic Tg2576 and wild-type
mice is assumed to be 0.0225 kg and 0.025 kg, respectively. Daily food intake for mice [364]
is assumed to be ~4.5 g [432]. The oral bioavailability of melatonin in humans and mice is
assumed to be 15% [465,466] and 29% [477], respectively, in the conversion for values in
column (B). Bioavailability enhancement via increased solubility is estimated at a conserva-
tive 50% increase based on data reported by Choudhary and coworkers [477]. Therefore,
values in column (C) are obtained by multiplying (A) by 4.25.

Table 3. Calculations of three HEDs converted from animal doses using different adjustments
that account for differences in (A) Metabolic rates by scaling to the
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Study Design/Total Daily
Dose/Duration/Ref. Results

(A) HED Daily Total
(mg/kg) Scaled to Mb

3/4
(B) Dose (A) Adjusted by

Bioavailability
(C) Dose (A) Adjusted by
Enhanced Bioavailability

2 mg/mL in drinking
water, Tg2576 AD

mice/266.66
mg/kg/11.5 mos starting

at 4 mos old/[361,362]

Striking reductions in Aβ
aggregates at all ages

during treatment;
dramatic extension of
survival of AD mice to

levels similar to
wild types.

2499 mg (35.7 mg/kg) 4831 mg (69 mg/kg) 10,621 mg (151.73 mg/kg)

0.5 mg/mL in drinking
water, Tg2576 AD

mice/66.66
mg/kg/11.5 mos starting

at 4 mos old/[362]

Striking reductions in Aβ
levels in brain tissues of
treated mice at 8, 9.5, 11,

and 15.5 months.

625 mg (8.928 mg/kg) 1208 mg (17.26 mg/kg) 2656 mg (37.94 mg/kg)

0.016 mg/mL in drinking
water, Tg2576 AD

mice/2.13 mg/kg/10 wks
starting at age 14 mos

old/[363]

Failed to reduce brain Aβ
levels, unable to reverse

oxidative damage.
19.96 mg (0.285 mg/kg) 38.58 mg (0.55 mg/kg) 84.83 mg (1.21 mg/kg)

10 mg/kg in drinking
water, healthy, normal

C57BL/6J mice/14 days
after tauopathy
initiation/[366]

Reduced memory
impairment, tau

hyperphosphorylation,
ROS, and

neuroinflammation.

96.23 mg (1.375 mg/kg) 186.0 mg (2.66 mg/kg) 408.98 mg (5.84 mg/kg)

40 ppm in food pellets,
healthy, normal B6C3F1

mice/7.2
mg/kg/11 weeks different

age groups/[364]

Significant reduction in
Aβ peptides in brain
cortex tissues: 57% in

Aβ40 and 73% in Aβ42;
increased melatonin levels

in cerebral cortex in all
3 treated age groups (12 >

6 > 27 mos) compared
to untreated.

69.29 mg (0.99 mg/kg) 133.94 mg (1.91 mg/kg) Not applicable

10 mg/kg IP injection,
C57BL/6J mice treated

with Aβ1-42
peptide/daily IP injections

for 3 wks/[365]

Reversed Aβ1-42-induced
synaptic disorder, memory

deficit; prevented
Aβ1-42-induced apoptosis,

neurodegeneration, and
tau phosphorylation.

98.55 mg (1.41 mg/kg) 486.15 mg (6.95 mg/kg) Not applicable

The selection of a “perfect” HED dose for melatonin under different contexts is ulti-
mately at the sole discretion of the investigator(s) who will determine the “parameters to
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be scaled, independent variables, and the mathematical relationship used in the scaling
process” [438,439]. Therefore, the values presented in Table 3 are intended purely as an
informative guide to various potentially effective HEDs for melatonin that can be applied
in the regulation of phase separation in dementia under distinct conditions.

5. Conclusions

Modernization of infrastructure leads to inevitable environmental changes that restrict
easy access to the ancient, dynamic synergy between light, water, and melatonin. Indi-
viduals who live in densely populated urban areas are affected by the lack of adequate
greenness that limits exposure to red and infrared frequencies from sunlight, generously
reflected by plants [205]. Furthermore, continuous exposure to low-level microwaves and
varying levels of EMF can restructure hydrogen bonding to either decrease or increase
intracellular viscosity [195–199]. Even exposure to magnetic fields at 0.5 T causes water
molecules to form new hydrogen bonds resulting in larger-sized water clusters that in-
crease viscosity but reduce the proportion of free water molecules [485]. At the same time,
the endogenous production of melatonin may be impacted under some circumstances by
constant exposure to 60 Hz magnetic field [424] and ambient light at night [425,426]. In
older adults with varying risks for dementia, increased light exposure in the evening results
in earlier dim light melatonin onset (DLMO) time. This shift in the circadian phase may
disturb rhythmicity that is often associated with dementia [486–488].

Our brave, new world offers unlimited potential in technological advances in every
frontier imaginable but exacts an exorbitant premium on our health by creating intracellular
conditions that favor aberrant phase separation resulting in pathological protein aggrega-
tions that are associated with a wide range of health challenges, including dementia. The
reinstatement of this powerful but lost synergy is a provocative proposal that entails the
conditional rescaling of an ancient theme to harmonize with the cacophony of modern
influences, restoring, once again, balance in optimum health.
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6-OHMS 6-sulfatoxymelatonin
Aβ amyloid-β
AD Alzhemer’s disease
AMP adenosine monophosphate
α-syn alpha-synuclein
ATP adenosine triphosphate
CP centipoise
COX cytochrome C oxidase
EMF electromagnetic fields
FTD frontotemporal dementia
FUS fused in sarcoma
H2O2 hydrogen peroxide
IDP intrinsically disordered protein
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IP intraperitoneal
IV intravenous
LCD low-complexity domain
MD molecular dynamics
MLO membraneless organelle
•OH hydroxyl radical
PD Parkinson’s disease
pI isoelectric point
ROS reactive oxygen species
SD Sprague Dawley
SG stress granule
VaD Vascular dementia
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