BioTechChem

Compare SS 31 to ARA 290

SS-31 (elamipretide) and ARA 290 (cibinetide) are both small therapeutic peptides with mitochondrial and tissue-protective effects, but their mechanisms and preclinical efficacy profiles differ substantially.

Mechanism

- **SS-31**: Binds mitochondrial cardiolipin, stabilizes mitochondrial structure, boosts ATP production, inhibits mitochondrial swelling and ROS generation, and prevents cell death—broadly targeting mitochondrial dysfunction in a variety of tissues.^[1]
- **ARA 290**: Mimics a portion of erythropoietin, but lacks EPO's hematopoietic effects. It activates the innate repair receptor (IRR; a β -common receptor/EPO-R heterocomplex). This initiates local anti-inflammatory, anti-apoptotic, and tissue repair responses, especially in neural tissues. [2][3][4]

Preclinical Efficacy Data

Aspect	SS-31 (Elamipretide)	ARA 290 (Cibinetide)
Main Targets	Mitochondria (cardiolipin binding, ATP, ROS, mPTP)	Innate repair receptor (βcR/EPO-R); anti- inflammatory/neuroprotection
Nerve/Neuro	Relieves neuroinflammation and cognitive/memory loss after injury, aging, sepsis; preserves synaptic and mitochondrial integrity [5][1]	Reduces chronic pain, mechanical/cold allodynia in nerve injury models; enhances regeneration and suppresses microglial activation [2][6]
Cardioprotection	Protects against ischemia/reperfusion injury in heart and kidney; improves recovery post-injury and reduces fibrosis [1]	Improves survival, reduces infarct size, and suppresses tissue damage after myocardial infarction and in shock models [2][7]
Metabolic	Improves insulin sensitivity, reduces kidney damage in diabetes models, maintains muscle structure [1]	Improves glucose homeostasis and lipid profiles in diabetic animals; improves corneal nerve density and sensory function [8][4]
Duration	Protection typically seen with repeated daily administration (e.g., 3–5 mg/kg i.p. for daysweeks in mice) [1]	Durable pain relief and tissue protection seen with daily 4 mg/kg s.c. for weeks; functional improvement sometimes lasts up to 20 weeks post-injury [2]

BioTechChem

Key Animal Model Results

SS-31:

- Preserves ATP and organ function in renal, cardiac, skeletal muscle, and brain injury models.[1]
- Ameliorates oxidative stress, enhances neurological recovery, and protects against ischemic injury in both acute and chronic models. [5][1]

ARA 290:

- Rapid and dose-dependent relief from neuropathic pain and allodynia in rodent nerve injury models, through βcR/IRR signaling.^{[6][2]}
- Promotes neurite outgrowth, tissue repair, and neuropathy reversal in diabetes and sarcoidosis models.[8][9][4]
- Suppresses spinal microglial activation and reduces pro-inflammatory cytokines, key in pain and neuroinflammation. [2][6]

Distinguishing Features

- **Breadth**: SS-31's effects are broader, covering multiple organ systems tied to mitochondrial dysfunction; ARA 290's greatest strength is neuroprotection, especially pain and small fiber neuropathy, with a clear anti-inflammatory and reparative action.
- **Direct mitochondrial restoration**: SS-31 directly improves mitochondrial bioenergetics; ARA 290 indirectly protects endothelial/neuronal mitochondria via IRR-triggered repair and anti-inflammatory signaling. [6][2][1]
- **Duration and persistence**: ARA 290 provides persistent relief in nerve injury that can outlast treatment; SS-31's actions strongly depend on continued administration. [2][1]

Both peptides display high efficacy in their target models in preclinical studies, but SS-31 is primarily mitochondrial and systemic, while ARA 290 is highly neuro- and tissue-reparative via cytokine modulation and endogenous repair pathways. [4][1][6][2]

BioTechChem

**

- 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC9192202/
- 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC3928087/
- 3. https://swolverine.com/en-ca/blogs/blog/ara-290-cibinetide
- $4. \quad \underline{https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.1096887/full}$
- 5. https://www.alzdiscovery.org/uploads/cognitive_vitality_media/SS-31-Cognitive-Vitality-For-Researchers.pdf
- 6. https://pmc.ncbi.nlm.nih.gov/articles/PMC5741312/
- 7. https://www.sciencedirect.com/science/article/abs/pii/S0887233320300783
- 8. https://pmc.ncbi.nlm.nih.gov/articles/PMC4365069/
- 9. https://pmc.ncbi.nlm.nih.gov/articles/PMC3563705/
- 10. https://www.sciencedirect.com/science/article/abs/pii/S0014299925003644
- 11. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.896601/full
- 12. https://www.sciencedirect.com/science/article/abs/pii/S1567576924009731
- 13. https://www.peptidesciences.com/peptide-research/what-is-ara-290
- 14. https://ard.bmj.com/content/72/Suppl_3/A620.1.info
- 15. https://www.bodyrejuvenationmd.com/peptide-therapy/ara-290-injections/
- 16. https://genoracle.com/wp-content/uploads/sites/26/2023/02/ARA-290-Doctor-Sheet.pdf
- 17. https://www.sciencedirect.com/science/article/abs/pii/S0889159121002804
- 18. https://onlinelibrary.wiley.com/doi/10.1155/2022/1295509
- 19. https://www.sciencedirect.com/science/article/abs/pii/S0165572814000095
- 20. https://www.peptidesciences.com/peptide-research/ara-290-neuroinflammation-innate-repair