A few articles I found on creatine and kidney health (in no particular order).
I must admit, after reviewing these papers (some clinical trials, some meta-analyses, and “literature reviews” (how does that merit a paper?) I am starting to think that even with one kidney — as long as it has healthily function (which it is), and I am healthy (which I am) — that creatine could be a benefit in building muscle, and possibly other impacts such as cardiovascular health, etc. Not using “bro-science” dosing (like the 20g per day I’ve seen, and higher), but long term 4g per day could be safe.
Does this make sense?
——————-
Long-term creatine supplementation is safe in aged patients with Parkinson disease
Andreas Bender et al. Nutr Res. 2008 Mar.
The food supplement creatine (Cr) is widely used by athletes as a natural ergogenic compound. It has also been increasingly tested in neurodegenerative diseases as a potential neuroprotective agent. Weight gain is the most common side effect of Cr, but sporadic reports about the impairment of renal function cause the most concerns with regard to its long-term use. Data from randomized controlled trials on renal function in Cr-supplemented patients are scarce and apply mainly to healthy young athletes. We systematically evaluated potential side effects of Cr with a special focus on renal function in aged patients with Parkinson disease as well as its current use in clinical medical research. Sixty patients with Parkinson disease received either oral Cr (n = 40) or placebo (n = 20) with a dose of 4 g/d for a period of 2 years. Possible side effects as indicated by a broad range of laboratory blood and urine tests were evaluated during 6 follow-up study visits. Overall, Cr was well tolerated. Main side effects were gastrointestinal complaints. Although serum creatinine levels increased in Cr patients because of the degradation of Cr, all other markers of tubular or glomerular renal function, especially cystatin C, remained normal, indicating unaltered kidney function. The data in this trial provide a thorough analysis and give a detailed overview about the safety profile of Cr in older age patients.
——————-
Does Creatine Supplementation Affect Renal Function in Patients with Peripheral Artery Disease? A Randomized, Double Blind, Placebo-controlled, Clinical Trial
Wagner Jorge Ribeiro Domingues et al. Ann Vasc Surg. 2020 Feb.
Results: No significant differences were found between groups before and after the intervention for serum creatinine (Cr: pre 1.00 ± 0.15 mL/dL vs. post 1.07 ± 0.16 mL/dL; PLA: pre 1.30 ± 0.53 mL/dL vs. post 1.36 ± 0.47 mL/dL, P = 0.590), creatinine excretion rate (Cr: pre 81.73 ± 43.80 mg/dL vs. post 102.92 ± 59.57 mg/dL; PLA: pre 74.37 ± 38.90 mg/dL vs. post 86.22 ± 39.94 mg/dL, P = 0.560), or creatinine clearance (Cr; pre 108 ± 59 mL/min/1.73 m2 vs. post 117 ± 52 mL/min/1.73 m2; PLA: pre 88 ± 49 mL/min/1.73 m2 vs. post 82 ± 47 mL/min/1.73 m2, P = 0.366).
Conclusions: Eight weeks of creatine supplementation is safe and does not compromise the renal function of patients with peripheral arterial disease
—————-
Effects of creatine supplementation on renal function: a randomized, double-blind, placebo-controlled clinical trial
Bruno Gualano et al. Eur J Appl Physiol. 2008 May.
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) ( approximately 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L(-1)) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
———————
Potential Adverse Effects of Creatine Supplement on the Kidney in Athletes and Bodybuilders
Dorna Davani-Davari et al. Iran J Kidney Dis. 2018 Oct.
Results: Short- and long-term creatine supplementations (range, 5 days to 5 years) with different doses (range, 5 g/d to 30 g/d) had no known significant effects on different studied indexes of kidney function such as glomerular filtration rate at least in healthy athletes and bodybuilders with no underlying kidney diseases. In addition, although short-term (range, 5 days to 2 weeks) high-dose oral creatine supplementation (range, 20 g/d to 0.3 g/kg/d) stimulated the production of methylamine and formaldehyde (as potential cytotoxic metabolites of creatine) in the urine of healthy humans, there was currently no definite clinical evidence about their adverse effects on the kidney function.
Conclusions: Although creatine supplementation appears to have no detrimental effects on kidney function of individuals without underlying kidney diseases, it seems more advisable to suggest that creatine supplementation not to be used by sportsmen or women with pre-existing kidney disease or those with a potential risk for kidney dysfunction.
———————-
Adverse effects of creatine supplementation: fact or fiction?
J R Poortmans et al. Sports Med. 2000 Sep.
The consumption of oral creatine monohydrate has become increasingly common among professional and amateur athletes. Despite numerous publications on the ergogenic effects of this naturally occurring substance, there is little information on the possible adverse effects of this supplement. The objectives of this review are to identify the scientific facts and contrast them with reports in the news media, which have repeatedly emphasised the health risks of creatine supplementation and do not hesitate to draw broad conclusions from individual case reports. Exogenous creatine supplements are often consumed by athletes in amounts of up to 20 g/day for a few days, followed by 1 to 10 g/day for weeks, months and even years. Usually, consumers do not report any adverse effects, but body mass increases. There are few reports that creatine supplementation has protective effects in heart, muscle and neurological diseases. Gastrointestinal disturbances and muscle cramps have been reported occasionally in healthy individuals, but the effects are anecdotal. Liver and kidney dysfunction have also been suggested on the basis of small changes in markers of organ function and of occasional case reports, but well controlled studies on the adverse effects of exogenous creatine supplementation are almost nonexistent. We have investigated liver changes during medium term (4 weeks) creatine supplementation in young athletes. None showed any evidence of dysfunction on the basis of serum enzymes and urea production. Short term (5 days), medium term (9 weeks) and long term (up to 5 years) oral creatine supplementation has been studied in small cohorts of athletes whose kidney function was monitored by clearance methods and urine protein excretion rate. We did not find any adverse effects on renal function. The present review is not intended to reach conclusions on the effect of creatine supplementation on sport performance, but we believe that there is no evidence for deleterious effects in healthy individuals. Nevertheless, idiosyncratic effects may occur when large amounts of an exogenous substance containing an amino group are consumed, with the consequent increased load on the liver and kidneys. Regular monitoring is compulsory to avoid any abnormal reactions during oral creatine supplementation.
———————-
The effect of creatine intake on renal function
Kurt A Pline et al. Ann Pharmacother. 2005 Jun.
Data synthesis: Supplementation with creatine, an unregulated dietary substance, is increasingly common in young athletes. To date, few studies have evaluated the impact of creatine on renal function and estimates of creatinine clearance. Because creatine is converted to creatinine in the body, supplementation with large doses of creatine may falsely elevate creatinine concentrations. Five studies have reported measures of renal function after acute creatine ingestion and 4 after chronic ingestion. All of these studies were completed in young healthy populations. Following acute ingestion (4-5 days) of large amounts of creatine, creatinine concentrations increased slightly, but not to a clinically significant concentration. Creatinine is also only minimally affected by longer creatine supplementation (up to 5.6 y).
Conclusions: Creatine supplementation minimally impacts creatinine concentrations and renal function in young healthy adults. Although creatinine concentrations may increase after long periods of creatine supplementation, the increase is extremely limited and unlikely to affect estimates of creatinine clearance and subsequent dosage adjustments. Further studies are required in the elderly and patients with renal insufficiency.
———————-
Few adverse effects of long-term creatine supplementation in a placebo-controlled trial
G J Groeneveld et al. Int J Sports Med. 2005 May.
Although oral creatine supplementation is very popular among athletes, no prospective placebo-controlled studies on the adverse effects of long-term supplementation have yet been conducted. We performed a double-blind, placebo-controlled trial of creatine monohydrate in patients with the neurodegenerative disease amyotrophic lateral sclerosis, because of the neuroprotective effects it was shown to have in animal experiments. The purpose of this paper is to compare the adverse effects, and to describe the effects on indirect markers of renal function of long-term creatine supplementation. 175 subjects (age = 57.7 +/- 11.1 y) were randomly assigned to receive creatine monohydrate 10 g daily or placebo during an average period of 310 days. After one month, two months and from then on every fourth month, adverse effects were scored using dichotomous questionnaires, plasma urea concentrations were measured, and urinary creatine and albumin concentrations were determined. No significant differences in the occurrence at any time of adverse effects due to creatine supplementation were found (23 % nausea in the creatine group, vs. 24 % in the placebo group, 19 % gastro-intestinal discomfort in the creatine group, vs. 18 % in the placebo group, 35 % diarrhoea in the creatine group, vs. 24 % in the placebo group). After two months of treatment, oedematous limbs were seen more often in subjects using creatine, probably due to water retention. Severe diarrhoea (n = 2) and severe nausea (n = 1) caused 3 subjects in the creatine group to stop intake of creatine, after which these adverse effects subsided. Long-term supplementation of creatine did not lead to an increase of plasma urea levels (5.69 +/- 1.47 before treatment vs. 5.26 +/- 1.44 at the end of treatment) or to a higher prevalence of micro-albuminuria (5.4 % before treatment vs. 1.8 % at the end of treatment).
———————-